Anatomically realistic aortic dissection simulator as a potential training tool for point-of-care ultrasound

解剖学上逼真的主动脉夹层模拟器可作为即时超声检查的潜在训练工具

阅读:7
作者:Mutiah Rahmah, Rania Hussien Al-Ashwal, Maheza Irna Mohamad Salim, Yan Tung Lam, Yuan Wen Hau

Aim

Simulators for aortic dissection diagnosis are limited by complex anatomy influencing the accuracy of point-of-care ultrasound for diagnosing aortic dissection. Therefore, this study aimed to create a healthy ascending aorta and class DeBakey, type II aortic dissection simulator as a potential point-of-care ultrasound training model. Material and

Conclusions

The simulators were able to replicate the surface morphology and echogenicity of the intimal flap, which is a linear hyperechoic area representing the separation of the aorta wall.

Material and methods

3D mould simulators were created based on computed tomography images of one healthy and one DeBakey type II aortic dissection patient. In the next step, two polyvinyl alcohol-based and two silicone-based simulators were synthesised.

Methods

3D mould simulators were created based on computed tomography images of one healthy and one DeBakey type II aortic dissection patient. In the next step, two polyvinyl alcohol-based and two silicone-based simulators were synthesised.

Results

The results of the scanning electron microscope assessment showed an aortic dissection simulator's surface with disorganised surface texture and higher root mean square (RMS or Rq) value than the healthy model of polyvinyl alcohol (RqAD = 20.28 > RqAAo = 10.26) and silicone (RqAD = 33.8 > RqAAo = 23.07). The ultrasound assessment of diameter aortic dissection showed higher than the healthy ascending aorta in polyvinyl alcohol (dAD = 28.2 mm > dAAo = 20.2 mm) and Si (dAD = 31.0 mm > dAAo = 22.4 mm), while the wall thickness of aortic dissection showed thinner than the healthy aorta in polyvinyl alcohol, which is comparable with the actual aorta measurement. The intimal flap of aortic dissection was able to replicate and showed a false lumen in the ultrasound images. The flap was measured quantitatively, indicating that the intimal flap was hyperechoic. Conclusions: The simulators were able to replicate the surface morphology and echogenicity of the intimal flap, which is a linear hyperechoic area representing the separation of the aorta wall.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。