iTRAQ-based proteomic analysis reveals potential osteogenesis-promoted role of ATM in strontium-incorporated titanium implant

基于 iTRAQ 的蛋白质组学分析揭示 ATM 在锶掺钛植入物中的潜在成骨促进作用

阅读:4
作者:Yuzi Xu, Chuan Zhou, Jia Li, Yangbo Xu, Fuming He

Abstract

The present study aims to reveal the osteogenic roles played by DNA damage response biomarkers through implementing isobaric tags for relative and absolute quantitation (iTRAQ) technique. First, sandblasted large-grit double acid-etched (SLA) titanium implant and strontium-incorporated (SLA-Sr) titanium implant were used for inserting in the tibiae of rats. iTRAQ technique was used to detect protein expression changes and identify differentially expressed proteins (DEPs). In total, 19,343 peptides and 4280 proteins were screened out. Among them, 91 and 138 DEPs were identified in the SLA-Sr group after implantation for 3 and 7 days, respectively. Ataxia-telangiectasia mutated (ATM) protein up-regulated on the 3rd day showed a trend of further up-regulation on the 7th day. Moreover, functional enrichment analyses were also conducted to explore the biological function of DEPs during the initial stage of osseointegration in vivo, which revealed that the biological functions of the DEPs on the 7th day were mainly related to "mismatch repair" and "mitotic G1 DNA damage checkpoint." Analysis of the Reactome signaling pathway showed that ATM was associated with TP53's regulation and activation. Finally, DNA damage repair related genes were selected for validation at mRNA and protein expression levels. Real-time reverse transcription-polymerase chain reaction and immunohistochemistry validation results demonstrated that mRNA expression level of ATM was higher in SLA-Sr group. In conclusion, SLA-Sr titanium implant could initiate DNA damage repair by activating expression levels of ATM. This study was striving to reveal new faces of better osseointegration and shedding light on the biological function and underlying mechanisms of this important procedure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。