Cranial irradiation alters neuroinflammation and neural proliferation in the pituitary gland and induces late-onset hormone deficiency

颅脑照射会改变垂体的神经炎症和神经增殖,并诱发晚发性激素缺乏症

阅读:4
作者:Yiran Xu, Yanyan Sun, Kai Zhou, Cuicui Xie, Tao Li, Yafeng Wang, Yaodong Zhang, Juan Rodriguez, Xiaoan Zhang, Ruijin Shao, Xiaoyang Wang, Changlian Zhu

Abstract

Cranial radiotherapy induces endocrine disorders and reproductive abnormalities, particularly in long-term female cancer survivors, and this might in part be caused by injury to the pituitary gland, but the underlying mechanisms are unknown. The aim of this study was to investigate the influence of cranial irradiation on the pituitary gland and related endocrine function. Female Wistar rat pups on postnatal day 11 were subjected to a single dose of 6 Gy whole-head irradiation, and hormone levels and organ structure in the reproductive system were examined at 20 weeks after irradiation. We found that brain irradiation reduced cell proliferation and induced persistent inflammation in the pituitary gland. The whole transcriptome analysis of the pituitary gland revealed that apoptosis and inflammation-related pathways were up-regulated after irradiation. In addition, irradiation led to significantly decreased levels of the pituitary hormones, growth hormone, adrenocorticotropic hormone, thyroid-stimulating hormone and the reproductive hormones testosterone and progesterone. To conclude, brain radiation induces reduction of pituitary and reproduction-related hormone secretion, this may due to reduced cell proliferation and increased pituitary inflammation after irradiation. Our results thus provide additional insight into the molecular mechanisms underlying complications after head irradiation and contribute to the discovery of preventive and therapeutic strategies related to brain injury following irradiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。