Spexin protects cardiomyocytes from hypoxia-induced metabolic and mitochondrial dysfunction

Spexin 保护心肌细胞免受缺氧引起的代谢和线粒体功能障碍

阅读:8
作者:Yang Liu, Li Sun, Linqun Zheng, Mengqi Su, He Liu, Ying Wei, Dan Li, Yike Wang, Chenguang Dai, Yongtai Gong, Chenyang Zhao, Yue Li

Abstract

Spexin (SPX) is a novel peptide with pleiotropic functions in adipose tissue including energy balance adjustment, fatty acid uptake, and glucose homeostasis. SPX level is closely associated with cardiovascular risk factors such as age, obesity, hypertension, and diabetes; however, its physiological significance in the cardiovascular system remains mostly undefined. We therefore here investigated the roles of SPX in regulating hypoxia-induced alterations in energy metabolism and mitochondrial function. We firstly confirmed that SPX is expressed in human and mouse cardiac tissue and documented that exposure to hypoxia in vitro reduces SPX level in rat H9C2 cardiomyocytes and primary neonatal rat ventricular myocytes (NRVMs). We then treated primary NRVMs with SPX before exposure to hypoxia, which (1) promoted fatty acid metabolism by enhancing expression of FAT/CD36, CPT1, ACADM, and PPAR-a and PGC1-a; (2) did not improve impaired glucose uptake; and (3) significantly prevented the downregulation of TFAM and mitochondrial electron transport chain complex and restrained UCP2 level and reactive oxygen species (ROS) production, thus enhancing ATP level in cardiomyocytes. In summary, SPX protects energy and mitochondrial homeostasis of cardiomyocytes during hypoxia, thereby highlighting the potential importance of SPX in the treatment of cardiovascular diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。