Automated detection of GFAP-labeled astrocytes in micrographs using YOLOv5

使用 YOLOv5 自动检测显微照片中的 GFAP 标记星形胶质细胞

阅读:5
作者:Yewen Huang, Anna Kruyer, Sarah Syed, Cihan Bilge Kayasandik, Manos Papadakis, Demetrio Labate

Abstract

Astrocytes, a subtype of glial cells with a complex morphological structure, are active players in many aspects of the physiology of the central nervous system (CNS). However, due to their highly involved interaction with other cells in the CNS, made possible by their morphological complexity, the precise mechanisms regulating astrocyte function within the CNS are still poorly understood. This knowledge gap is also due to the current limitations of existing quantitative image analysis tools that are unable to detect and analyze images of astrocyte with sufficient accuracy and efficiency. To address this need, we introduce a new deep learning framework for the automated detection of GFAP-immunolabeled astrocytes in brightfield or fluorescent micrographs. A major novelty of our approach is the applications of YOLOv5, a sophisticated deep learning platform designed for object detection, that we customized to derive optimized classification models for the task of astrocyte detection. Extensive numerical experiments using multiple image datasets show that our method performs very competitively against both conventional and state-of-the-art methods, including the case of images where astrocytes are very dense. In the spirit of reproducible research, our numerical code and annotated data are released open source and freely available to the scientific community.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。