A VASt-domain protein regulates autophagy, membrane tension, and sterol homeostasis in rice blast fungus

VASt 结构域蛋白调节稻瘟病菌的自噬、膜张力和固醇稳态

阅读:7
作者:Xue-Ming Zhu, Lin Li, Ying-Ying Cai, Xi-Yu Wu, Huan-Bin Shi, Shuang Liang, Ying-Min Qu, Naweed I Naqvi, Maurizio Del Poeta, Bo Dong, Fu-Cheng Lin, Xiao-Hong Liu

Abstract

Sterols are a class of lipids critical for fundamental biological processes and membrane dynamics. These molecules are synthesized in the endoplasmic reticulum (ER) and are transported bi-directionally between the ER and plasma membrane (PM). However, the trafficking mechanism of sterols and their relationship with macroautophagy/autophagy are still poorly understood in the rice blast fungus Magnaporthe oryzae. Here, we identified the VAD1 Analog of StAR-related lipid transfer (VASt) domain-containing protein MoVast1 via co-immunoprecipitation in M. oryzae. Loss of MoVAST1 resulted in conidial defects, impaired appressorium development, and reduced pathogenicity. The MoTor (target of rapamycin in M. oryzae) activity is inhibited because MoVast1 deletion leads to high levels of sterol accumulation in the PM. Site-directed mutagenesis showed that the 902 T site is essential for localization and function of MoVast1. Through filipin or Flipper-TR staining, autophagic flux detection, MoAtg8 lipidation, and drug sensitivity assays, we uncovered that MoVast1 acts as a novel autophagy inhibition factor that monitors tension in the PM by regulating the sterol content, which in turn modulates the activity of MoTor. Lipidomics and transcriptomics analyses further confirmed that MoVast1 is an important regulator of lipid metabolism and the autophagy pathway. Our results revealed and characterized a novel sterol transfer protein important for M. oryzae pathogenicity.Abbreviations: AmB: amphotericin B; ATMT: Agrobacterium tumefaciens-mediated transformation; CM: complete medium; dpi: days post-inoculation; ER: endoplasmic reticulum; Flipper-TR: fluorescent lipid tension reporter; GO: Gene ontology; hpi: hours post-inoculation; IH: invasive hyphae; KEGG: kyoto encyclopedia of genes and genomes; MoTor: target of rapamycin in Magnaporthe oryzae; PalmC: palmitoylcarnitine; PM: plasma membrane; SD-N: synthetic defined medium without amino acids and ammonium sulfate; TOR: target of rapamycin; VASt: VAD1 Analog of StAR-related lipid transfer; YFP, yellow fluorescent protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。