1, 6-di-O-caffeoyl-β-D-glucopyranoside, a natural compound from Callicarpa nudiflora Hook impairs P2Y12 and thromboxane A2 receptor-mediated amplification of platelet activation and aggregation

1,6-二-O-咖啡酰-β-D-葡萄吡喃苷,一种来自裸花紫珠的天然化合物,可抑制 P2Y12 和血栓素 A2 受体介导的血小板活化和聚集的扩增

阅读:5
作者:Jianjiang Fu, Xiaocui Zhu, Wei Wang, Hong Lu, Zhoumiao Zhang, Ting Liu, Huanjun Xu, Huizheng Fu, Shuangcheng Ma, Yuehua Luo

Background

Platelet activation and subsequent accumulation at sites of vascular injury perform a central role in thrombus formation, which is believed to be the trigger of several cardiovascular diseases, such as atherosclerosis, myocardial infarction and strokes. In this sense, the search for agents that are capable of blocking platelets aggregation has important implications for these diseases. Callicarpa nudiflora (C. nudiflora) Hook is a traditional Chinese medicine herb for eliminating stasis to subdue swelling and hemostasis. Our previous study found several compounds extracted from this herb, including 1, 6-di-O-caffeoyl-β-D-glucopyranoside (CGP), showed inhibitory effects on adenosine diphosphate (ADP) induced platelet aggregation.

Conclusion

Collectively, the data presented here demonstrated that CGP, a natural compound from Callicarpa nudiflora Hook, inhibited the development of platelet aggregation and amplification of platelet activation. These inhibitory effects may be associated with its dual-receptor inhibition on P2Y12 and TP receptors.

Methods

The experiments were performed on platelet rich plasma freshly isolated from SD rat. ADP, U46619 or arachidonic acid (AA) induced platelet aggregation assay were performed to evaluate the anti-platelet properties of CGP. Activated αIIbβ3 integrin abundance, serotonin (5-HT) secretion, thromboxane A2 (TXA2) synthesis was determined to assess the effects of CGP on platelet activation. Furthermore, RhoA and PI3K/Akt/GSK3β signal transduction were analyzed by Western Blotting assay. In addition, radiolabelled ligand binding assay was involved to evaluate the ability of CGP binding to thromboxane prostanoid (TP) and P2Y12 receptors.

Purpose

The aim of current study is confirmation of the anti-platelet effects and elucidation of the probable mechanisms.

Results

CGP inhibited platelet aggregation induced by ADP, U46619 and arachidonic acid (AA), significantly. Furthermore, it is also found that LGP exhibited obvious inhibitory effects on αIIbβ3 integrin activation, serotonin (5-HT) secretion from granule and thromboxane A2 (TXA2) synthesis. Next, we found that CGP suppressed RhoA and PI3K/Akt/GSK3β signal transduction. Data from radiolabelled ligand binding assay showed that CGP displayed apparent competing effects on TP and P2Y12 receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。