Ultrasound molecular imaging of p32 protein translocation for evaluation of tumor metastasis

p32 蛋白易位的超声分子成像在肿瘤转移评估中的应用

阅读:6
作者:Yongsheng Hao, Jingna Luo, Yuanyuan Wang, Zhenzhou Li, Xiangwei Wang, Fei Yan

Abstract

Protein translocation is an essential process for living cells to respond to different physiological, pathological or environmental stimuli. However, its abnormal occurrence usually results in undesirable outcomes such as tumors. To date, there is still a lack of appropriate methods to detect this event in live animals in a real-time manner. Here, we identified the gradually increased cell-surface translocation of p32 protein from mitochondria during tumor progression. LyP-1-modified gas vesicles (LyP-1-GVs) were developed through conjugating LyP-1 (p32-targeting peptide) to the biosynthetic GVs to monitor the cell-surface level of p32 translocation. The resulting LyP-1-GVs have about 200 nm particle size and good tumor cell targeting performance. Upon systemic administration, LyP-1-GVs can traverse through blood vessels and bind to the tumor cells, producing strong contrast imaging signals in comparison with the non-targeted GVs. The contrast imaging signals correlate well with the cell-surface translocation level of p32 protein and tumor metastatic ability. To our knowledge, this is the first report about the in vivo detection of protein translocation to cell membrane from mitochondria by ultrasound molecular imaging. Our study provides a new strategy to explore the molecular events of protein membrane translocations for evaluation of tumor metastasis at the live animal level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。