Impact of a novel homozygous mutation in nicotinamide nucleotide transhydrogenase on mitochondrial DNA integrity in a case of familial glucocorticoid deficiency

烟酰胺核苷酸转氢酶新型纯合突变对家族性糖皮质激素缺乏症患者线粒体 DNA 完整性的影响

阅读:8
作者:Yasuko Fujisawa, Eleonora Napoli, Sarah Wong, Gyu Song, Rie Yamaguchi, Toshiharu Matsui, Keisuke Nagasaki, Tsutomu Ogata, Cecilia Giulivi

Background

Familial Glucocorticoid Deficiency (FGD) is a rare autosomal recessive disorder that is characterized by isolated glucocorticoid deficiency. Recently, mutations in the gene encoding for the mitochondrial nicotinamide nucleotide transhydrogenase (NNT) have been identified as a causative gene for FGD; however, no NNT activities have been reported in FGD patients carrying NNT mutations.

Conclusions

Our results indicated that (i) mitochondrial biogenesis (citrate synthase activity) and/or mtDNA replication (mtDNA copy number) were affected at ≤60% NNT activity because these parameters were affected in individuals carrying either one or both mutated alleles; and (ii) other outcomes (mtDNA deletions, protein tyrosine nitration, OXPHOS capacity) were affected at ≤30% NNT activity as also observed in murine cerebellar mitochondria from C57BL/6J (NNT-/-) vs. C57BL/6JN (NNT+/+) substrains. General significance: By studying a family affected with a novel point mutation in the NNT gene, a gene-dose response was found for various mitochondrial outcomes providing for novel insights into the role of NNT in the maintenance of mtDNA integrity beyond that described for preventing oxidative stress.

Methods

Clinical, biochemical and molecular analyses of lymphocytes from FDG homozygous and heterozygous carriers for the F215S NNT mutation.

Results

In this study, we described an FGD-affected Japanese patient carrying a novel NNT homozygous mutation (c.644T>C; F215S) with a significant loss-of-function (NNT activity = 31% of healthy controls) in peripheral blood cells' mitochondria. The NNT activities of the parents, heterozygous for the mutation, were 61% of controls. Conclusions: Our results indicated that (i) mitochondrial biogenesis (citrate synthase activity) and/or mtDNA replication (mtDNA copy number) were affected at ≤60% NNT activity because these parameters were affected in individuals carrying either one or both mutated alleles; and (ii) other outcomes (mtDNA deletions, protein tyrosine nitration, OXPHOS capacity) were affected at ≤30% NNT activity as also observed in murine cerebellar mitochondria from C57BL/6J (NNT-/-) vs. C57BL/6JN (NNT+/+) substrains. General significance: By studying a family affected with a novel point mutation in the NNT gene, a gene-dose response was found for various mitochondrial outcomes providing for novel insights into the role of NNT in the maintenance of mtDNA integrity beyond that described for preventing oxidative stress.

Significance

By studying a family affected with a novel point mutation in the NNT gene, a gene-dose response was found for various mitochondrial outcomes providing for novel insights into the role of NNT in the maintenance of mtDNA integrity beyond that described for preventing oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。