Alpha-naphthoflavone attenuates non-alcoholic fatty liver disease in oleic acid-treated HepG2 hepatocytes and in high fat diet-fed mice

α-萘黄酮可减轻经油酸处理的 HepG2 肝细胞和高脂饮食喂养的小鼠中的非酒精性脂肪肝疾病

阅读:6
作者:Hongguang Xia, Xiangyu Zhu, Xiaoyan Zhang, Haiyan Jiang, Biao Li, Zhihao Wang, Dalang Li, Yong Jin

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease. The literature suggests that the aryl hydrocarbon receptor (AHR) may be a key player in the pathogenesis of NAFLD, and it can modulate the synthesis of cytochrome P450 1A1 (CYP1A1) and tumor necrosis factor-α (TNF-α). Previous studies have shown that CYP1A1 is a key enzyme of oxidative stress, TNF-α is involved in the formation of insulin resistance (IR), oxidative stress and insulin resistance are the key factors for the formation of NAFLD. Therefore, it can be said that AHR may participate in contributing to NAFLD by regulating CYP1A1 and TNF-α. Alpha-naphthoflavone (ANF) is an effective AHR inhibitor. The present study was designed to explore the hepatoprotective effect of ANF in high fat diet (HFD)-induced NAFLD mice and oleic acid (OA)-treated HepG2 hepatocytes. Mice were fed HFD to induce NAFLD, HepG2 cells were exposed to OA to induce hepatocyte injury, and ANF significantly reduced mouse and cellular liver damage compared to the HFD-induced NAFLD and OA-treated HepG2 hepatocytes. ANF treatment reduces liver damage by reducing ROS and IR, the data show that ANF inhibits the expression of AHR, CYP1A1 and TNF-α in NAFLD. Taken together, these findings show that ANF alleviate NAFLD via regulation of AHR/CYP1A1 and AHR/TNF-α pathways, which may have potential for further development as novel therapeutic agents for NAFLD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。