Integrating single-cell RNA sequencing and prognostic model revealed the carcinogenicity and clinical significance of FAM83D in ovarian cancer

整合单细胞 RNA 测序和预后模型揭示 FAM83D 在卵巢癌中的致癌性和临床意义

阅读:5
作者:Jie Li, Zhefeng Li, Yan Gao, Hongyu Zhao, Jiahao Guo, Zhibin Liu, Chenghong Yin, Xiaoting Zhao, Wentao Yue

Background

Ovarian cancer (OC) is a fatal gynecological tumor with high mortality and poor prognosis. Yet, its molecular mechanism is still not fully explored, and early prognostic markers are still missing. In this study, we assessed carcinogenicity and clinical significance of family with sequence similarity 83 member D (FAM83D) in ovarian cancer by integrating single-cell RNA sequencing (scRNA-seq) and a prognostic model.

Conclusions

Our findings highlight the importance of miR-138 -5p/FAM83D/EMT signaling and may provide new insights into therapeutic strategies for OC.

Methods

A 10x scRNA-seq analysis was performed on cells from normal ovary and high-grade serous ovarian cancer (HGSOC) tissue. The prognostic model was constructed by Lasso-Cox regression analysis. The biological function of FAM83D on cell growth, invasion, migration, and drug sensitivity was examined in vitro in OC cell lines. Luciferase reporter assay was performed for binding analysis between FAM83D and microRNA-138-5p (miR-138-5p).

Results

Our integrative analysis identified a subset of malignant epithelial cells (C1) with epithelial-mesenchymal transition (EMT) and potential hyperproliferation gene signature. A FAM83D+ malignant epithelial subcluster (FAM83D+ MEC) was associated with cell cycle regulation, apoptosis, DNA repair, and EMT activation. FAM83D resulted as a viable prognostic marker in a prognostic model that efficiently predict the overall survival of OC patients. FAM83D downregulation in SKOV3 and A2780 cells increased cisplatin sensitivity, reducing OC cell proliferation, migration, and invasion. MiR-138-5p was identified to regulate FAM83D's carcinogenic effect in OC cells. Conclusions: Our findings highlight the importance of miR-138 -5p/FAM83D/EMT signaling and may provide new insights into therapeutic strategies for OC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。