TIGAR promotes growth, survival and metastasis through oxidation resistance and AKT activation in glioblastoma

TIGAR 通过抗氧化和 AKT 激活促进胶质母细胞瘤的生长、存活和转移

阅读:5
作者:Zhi Tang, Zhengwen He

Abstract

Glioblastoma has a poor prognosis and is one of the most lethal types of cancer in the world. TP53 induced glycolysis regulatory phosphatase (TIGAR) is upregulated in various types of cancer. Therefore, the present study investigated the role of TIGAR in glioblastoma. TIGAR expression was measured in glioma samples and cell lines using immunohistochemistry and western blotting. Reduced nicotinamide adenine dinucleotide phosphate (NADPH), glutathione, malondialdehyde and intracellular reactive oxygen species levels were detected to measure oxidative stress in U-87MG cells following short hairpin RNA (shRNA)-mediated knockdown of TIGAR. Cell viability was determined using an MTT assay for TIGAR-overexpression vector- and TIGAR-shRNA-transfected U-87MG cells. Apoptosis was assessed to evaluate whether TIGAR knockdown sensitized cells to the antitumor effects of temozolomide (TMZ). Migration, invasion and epithelial-mesenchymal transition (EMT) were further assessed using Transwell and western blotting assays. A co-immunoprecipitation assay was used to detect the interaction between TIGAR and protein kinase B (AKT). The results of the present study revealed that TIGAR was positively associated with poor survival and was upregulated in glioblastoma. TIGAR knockdown significantly increased oxidative stress, decreased cell proliferation and exacerbated TMZ-induced apoptosis in U-87MG cells. Additionally, TIGAR knockdown decreased migration, invasion and EMT, and treatment of TIGAR-shRNA-transfected cells with NADPH had no effect on metastasis. In addition, TIGAR promoted AKT activation and bound to AKT. In conclusion, the present study demonstrated that TIGAR may promote glioblastoma growth and progression through oxidation resistance and AKT activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。