In vitro analysis of hepatic stellate cell activation influenced by transmembrane 6 superfamily 2 polymorphism

跨膜6超家族2多态性对肝星状细胞活化影响的体外分析

阅读:7
作者:Songyao Liu, Eisuke Murakami, Takashi Nakahara, Kazuki Ohya, Yuji Teraoka, Grace Naswa Makokha, Takuro Uchida, Kei Morio, Hatsue Fujino, Atsushi Ono, Masami Yamauchi, Tomokazu Kawaoka, Daiki Miki, Masataka Tsuge, Akira Hiramatsu, Hiromi Abe-Chayama, Nelson C Hayes, Michio Imamura, Hiroshi Aikata, Ka

Abstract

Non‑alcoholic steatohepatitis (NASH) may progress via liver fibrosis along with hepatic stellate cell (HSC) activation. A single nucleotide polymorphism (SNP; rs58542926) located in transmembrane 6 superfamily 2 (TM6SF2) has been reported to be significantly associated with fibrosis in patients with NASH, but the precise mechanism is still unknown. The present study aimed to explore the role of TM6SF2 in HSC activation in vitro. Plasmids producing TM6SF2 wild-type (WT) and mutant type (MT) containing E167K amino acid substitution were constructed, and the activation of LX‑2 cells was analyzed by overexpressing or knocking down TM6SF2 under transforming growth factor β1 (TGFβ) treatment. Intracellular α‑smooth muscle actin (αSMA) expression in LX‑2 cells was significantly repressed by TM6SF2‑WT overexpression and increased by TM6SF2 knockdown. Following treatment with TGFβ, αSMA expression was restored in TM6SF2‑WT overexpressed LX‑2 cells and was enhanced in TM6SF2 knocked‑down LX‑2 cells. Comparing αSMA expression under TM6SF2‑WT or ‑MT overexpression, expression of αSMA in TM6SF2‑MT overexpressed cells was higher than that in TM6SF2‑WT cells and was further enhanced by TGFβ treatment. The present study demonstrated that intracellular αSMA expression in HCS was negatively regulated by TM6SF2 while the E167K substitution released this negative regulation and led to enhanced HSC activation by TGFβ. These results suggest that the SNP in TM6SF2 may relate to sensitivity of HSC activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。