MEMRI-based imaging pipeline for guiding preclinical studies in mouse models of sporadic medulloblastoma

基于 MEMRI 的成像流程用于指导散发性髓母细胞瘤小鼠模型的临床前研究

阅读:6
作者:Harikrishna Rallapalli, I-Li Tan, Eugenia Volkova, Alexandre Wojcinski, Benjamin C Darwin, Jason P Lerch, Alexandra L Joyner, Daniel H Turnbull

Conclusion

Our results revealed a high level of heterogeneity between tumors within and between aSmo MB models, indicating that meaningful studies of sporadic tumor progression and response to therapy could not be conducted without an imaging-based pipeline approach.

Methods

Sporadic MB was modeled in mice by inducing expression of an activated form of the Smoothened gene (aSmo) in a small number of cerebellar granule cell precursors. aSmo mice were imaged and analyzed at defined time-points using a 3D manganese-enhanced MRI-based pipeline optimized for high-throughput.

Purpose

Genetically engineered mouse models of sporadic cancers are critical for studying tumor biology and for preclinical testing of therapeutics. We present an MRI-based pipeline designed to produce high resolution, quantitative information about tumor progression and response to novel therapies in mouse models of medulloblastoma (MB).

Results

A semi-automated segmentation protocol was established that estimates tumor volume in a time-frame compatible with a high-throughput pipeline. Both an empirical, volume-based classifier and a linear discriminant analysis-based classifier were tested to distinguish progressing from nonprogressing lesions at early stages of tumorigenesis. Tumor centroids measured at early stages revealed that there is a very specific location of the probable origin of the aSmo MB tumors. The efficacy of the manganese-enhanced MRI pipeline was demonstrated with a small-scale experimental drug trial designed to reduce the number of tumor associated macrophages and microglia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。