A potent voltage-gated calcium channel inhibitor engineered from a nanobody targeted to auxiliary CaVβ subunits

一种有效的电压门控钙通道抑制剂,由针对辅助 CaVβ 亚基的纳米抗体设计而成

阅读:5
作者:Travis J Morgenstern, Jinseo Park, Qing R Fan, Henry M Colecraft

Abstract

Inhibiting high-voltage-activated calcium channels (HVACCs; CaV1/CaV2) is therapeutic for myriad cardiovascular and neurological diseases. For particular applications, genetically-encoded HVACC blockers may enable channel inhibition with greater tissue-specificity and versatility than is achievable with small molecules. Here, we engineered a genetically-encoded HVACC inhibitor by first isolating an immunized llama nanobody (nb.F3) that binds auxiliary HVACC CaVβ subunits. Nb.F3 by itself is functionally inert, providing a convenient vehicle to target active moieties to CaVβ-associated channels. Nb.F3 fused to the catalytic HECT domain of Nedd4L (CaV-aβlator), an E3 ubiquitin ligase, ablated currents from diverse HVACCs reconstituted in HEK293 cells, and from endogenous CaV1/CaV2 channels in mammalian cardiomyocytes, dorsal root ganglion neurons, and pancreatic β cells. In cardiomyocytes, CaV-aβlator redistributed CaV1.2 channels from dyads to Rab-7-positive late endosomes. This work introduces CaV-aβlator as a potent genetically-encoded HVACC inhibitor, and describes a general approach that can be broadly adapted to generate versatile modulators for macro-molecular membrane protein complexes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。