The Photoprotective Behavior of a Motile Benthic Diatom as Elucidated from the Interplay Between Cell Motility and Physiological Responses to a Light Microgradient Using a Novel Experimental Setup

利用新颖的实验装置,从细胞运动与光微梯度生理反应之间的相互作用阐明运动底栖硅藻的光保护行为

阅读:5
作者:Jérôme Morelle, Alexandra Bastos, Silja Frankenbach, Jörg C Frommlet, Douglas A Campbell, Johann Lavaud, João Serôdio

Abstract

It has long been hypothesized that benthic motile pennate diatoms use phototaxis to optimize photosynthesis and minimize photoinhibitory damage by adjusting their position within vertical light gradients in coastal benthic sediments. However, experimental evidence to test this hypothesis remains inconclusive, mainly due to methodological difficulties in studying cell behavior and photosynthesis over realistic spatial microscale gradients of irradiance and cell position. In this study, a novel experimental approach was developed and used to test the hypothesis of photosynthesis optimization through motility, based on the combination of single-cell in vivo chlorophyll fluorometry and microfluidic chips. The approach allows the concurrent study of behavior and photosynthetic activity of individual cells of the epipelic diatom species Craspedostauros britannicus exposed to a light microgradient of realistic dimensions, simulating the irradiance and distance scales of light microgradients in benthic sediments. Following exposure to light, (i) cells explored their light environment before initiating light-directed motility; (ii) cells used motility to lower their light dose, when exposed to the highest light intensities; and (iii) motility was combined with reversible non-photochemical quenching, to allow cells to avoid photoinhibition. The results of this proof-of-concept study not only strongly support the photoprotective nature of photobehavior in the studied species but also revealed considerable variability in how individual cells reacted to a light microgradient. The experimental setup can be readily applied to study motility and photosynthetic light responses of other diatom species or natural assemblages, as well as other photoautotrophic motile microorganisms, broadening the toolset for experimental microbial ecology research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。