PDGF mediates pulmonary arterial smooth muscle cell proliferation and migration by regulating NFATc2

PDGF通过调节NFATc2介导肺动脉平滑肌细胞增殖和迁移

阅读:6
作者:Fang-Yun Zhao, Shuang-Lan Xu, Chun-Fang Zhang, Jie Liu, Yue Zhang, Jiao Yang, Xi-Qian Xing

Abstract

The reconstruction of pulmonary vascular structure caused by the proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) is the central link in the formation of pulmonary arterial hypertension (PAH). Platelet‑derived growth factor (PDGF) can regulate the proliferation and migration of PASMCs. At the same time, nuclear factor of activated T cells (NFATs) plays an important role in the development of PAH. To the best of our knowledge, there are no reports yet regarding whether PDGF regulates NFATc2 to increase the proliferation of PASMCs. The present study aimed to investigate whether PDGF affects the proliferation and migration of PASMCs by regulating NFAT, and to study the pathogenesis of PAH. PASMCs were treated with recombinant PDGF; Cell Counting Kit‑8 and clone formation experiments showed that PDGF enhanced the cell viability and proliferation of PASMCs. Cell cycle distribution and molecular markers related to cell proliferation (cyclin D1, CDK4 and Proliferating Cell Nuclear Antigen) were detected by flow cytometry, and the results indicated that PDGF promoted the division of PAMSCs. The scratch migration and Transwell migration assays showed that the migratory ability of PASMCs was enhanced following PDGF treatment. Changes in NFATs (NFATc1‑5) after PDGF treatment were evaluated by reverse transcription‑quantitative PCR and western blotting; NFATc2 showed the most significant results. Finally, PDGF‑treated cells were treated with an NFAT pathway inhibitor, cyclosporin A, or a small interfering RNA targeting NFATc2, and changes in cell proliferation and migration were evaluated to assess the role of NFATc2 in PDGF‑induced cell proliferation and migration. In conclusion, PDGF may regulate PASMC proliferation and migration by regulating the expression of NFAT, further leading to the occurrence of PAH. It is proposed that NFATc2 could be used as a potential target for PAH treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。