Astragaloside‑IV modulates NGF‑induced osteoblast differentiation via the GSK3β/β‑catenin signalling pathway

黄芪苷 IV 通过 GSK3β/β‑catenin 信号通路调节 NGF 诱导的成骨细胞分化

阅读:8
作者:Nan-Yang Sun, Xiao-Lan Liu, Juan Gao, Xiao-Hui Wu, Ben Dou

Abstract

Astragaloside (AST) is derived from the Chinese herb <em>Astragalus membranaceus</em>, and studies have demonstrated that it promotes differentiation of bone marrow‑derived mesenchymal stem cells (BMSCs). To the best of our knowledge, however, the functions of the component AST‑IV in osteogenesis have not previously been elucidated. The present study aimed to verify the effects of AST‑IV in osteogenesis. First, the proliferation and differentiation status of human BMSCs incubated with AST‑IV were analysed and compared with a control (no AST‑IV treatment). In order to determine the involvement of the glycogen synthase kinase (GSK)3β signalling pathway in AST‑IV, overexpression and inhibition of GSK3β was induced during incubation of BMSCs with AST‑IV. In order to investigate how neuronal growth factor (NGF) contributes to BMSCs differentiation, BMSCs were co‑incubated with an anti‑NGF antibody and AST IV, and then levels of osteogenesis markers were assessed. The results demonstrated for the first time that AST‑IV contributed to BMSCs differentiation. Furthermore, the GSK3β/β‑catenin signalling pathway was revealed to be involved in AST‑IV‑induced osteogenesis; moreover, AST‑IV accelerated differentiation by enhancing the expression levels of NGF. In summary, the present study demonstrated that AST‑IV promotes BMSCs differentiation, thus providing a potential target for the treatment of osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。