Upregulation of CDGSH iron sulfur domain 2 attenuates cerebral ischemia/reperfusion injury

CDGSH 铁硫结构域 2 的上调可减轻脑缺血/再灌注损伤

阅读:6
作者:Miao Hu, Jie Huang, Lei Chen, Xiao-Rong Sun, Zi-Meng Yao, Xu-Hui Tong, Wen-Jing Jin, Yu-Xin Zhang, Shu-Ying Dong

Abstract

CDGSH iron sulfur domain 2 can inhibit ferroptosis, which has been associated with cerebral ischemia/reperfusion, in individuals with head and neck cancer. Therefore, CDGSH iron sulfur domain 2 may be implicated in cerebral ischemia/reperfusion injury. To validate this hypothesis in the present study, we established mouse models of occlusion of the middle cerebral artery and HT22 cell models of oxygen-glucose deprivation and reoxygenation to mimic cerebral ischemia/reperfusion injury in vivo and in vitro, respectively. We found remarkably decreased CDGSH iron sulfur domain 2 expression in the mouse brain tissue and HT22 cells. When we used adeno-associated virus and plasmid to up-regulate CDGSH iron sulfur domain 2 expression in the brain tissue and HT22 cell models separately, mouse neurological dysfunction was greatly improved; the cerebral infarct volume was reduced; the survival rate of HT22 cells was increased; HT22 cell injury was alleviated; the expression of ferroptosis-related glutathione peroxidase 4, cystine-glutamate antiporter, and glutathione was increased; the levels of malondialdehyde, iron ions, and the expression of transferrin receptor 1 were decreased; and the expression of nuclear-factor E2-related factor 2/heme oxygenase 1 was increased. Inhibition of CDGSH iron sulfur domain 2 upregulation via the nuclear-factor E2-related factor 2 inhibitor ML385 in oxygen-glucose deprived and reoxygenated HT22 cells blocked the neuroprotective effects of CDGSH iron sulfur domain 2 up-regulation and the activation of the nuclear-factor E2-related factor 2/heme oxygenase 1 pathway. Our data indicate that the up-regulation of CDGSH iron sulfur domain 2 can attenuate cerebral ischemia/reperfusion injury, thus providing theoretical support from the perspectives of cytology and experimental zoology for the use of this protein as a therapeutic target in patients with cerebral ischemia/reperfusion injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。