Apigenin attenuates insulin-like growth factor-I signaling in an autochthonous mouse prostate cancer model

芹菜素减弱小鼠本土前列腺癌模型中的胰岛素样生长因子-I 信号传导

阅读:7
作者:Sanjeev Shukla, Gregory T MacLennan, Pingfu Fu, Sanjay Gupta

Conclusions

Our results indicate that apigenin effectively suppressed prostate cancer progression in TRAMP mice by attenuating IGF-I/IGFBP-3 signaling and inhibiting angiogenesis and metastasis.

Methods

Mice received p.o. apigenin at 20 and 50 μg/day dose for 20 weeks. ELISA, Western blotting and immunohistochemistry were performed to examine the IGF-axis and its regulated pathway in response to apigenin intake.

Purpose

Deregulation of IGF signaling plays an important role in prostate cancer and contributes to invasion and metastasis. We determined the effect of apigenin, a plant flavone, on IGF signaling and its downstream targets in TRAMP mice.

Results

Increased serum levels of IGF-I, VEGF, uPA and concomitant decrease in IGFBP-3 were observed; p-Akt (Ser473), p-ERK1 (T202/Y204) and p-ERK2 (T185/Y187) expression increased in the dorso-lateral prostate of TRAMP mice during the course of cancer progression as a function of age. P.o. administration of apigenin resulted in substantial reduction in the levels of IGF-I and increase in the levels of IGFBP-3 in the serum and the dorso-lateral prostate. This modulation of IGF/IGFBP-3 was associated with an inhibition of p-Akt and p-ERK1/2. Apigenin intake resulted in marked inhibition of VEGF, uPA, MMP-2 and MMP-9 which coincided with tumor growth inhibition and complete absence of metastasis in TRAMP mice. Conclusions: Our results indicate that apigenin effectively suppressed prostate cancer progression in TRAMP mice by attenuating IGF-I/IGFBP-3 signaling and inhibiting angiogenesis and metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。