GDI2 deletion alleviates neurodegeneration and memory loss in the 5xFAD mice model of Alzheimer's disease

GDI2 缺失可减轻阿尔茨海默病 5xFAD 小鼠模型中的神经退行性病变和记忆丧失

阅读:5
作者:Meitian Wang, Xiuqing He, Jie Li, Daobin Han, Pan You, Hui Yu, Luwen Wang, Bo Su

Abstract

Accumulation of insoluble deposits of amyloid β-peptide (Aβ), derived from amyloid precursor protein (APP) processing, represents one of the major pathological hallmarks of Alzheimer's disease (AD). Perturbations in APP transport and hydrolysis could lead to increased Aβ production. However, the precise mechanisms underlying APP transport remain elusive. The GDP dissociation inhibitor2 (GDI2), a crucial regulator of Rab GTPase activity and intracellular vesicle and membrane trafficking, was investigated for its impact on AD pathogenesis through neuron-specific knockout of GDI2 in 5xFAD mice. Notably, deficiency of GDI2 significantly ameliorated cognitive impairment, prevented neuronal loss in the subiculum and cortical layer V, reduced senile plaques as well as astrocyte activation in 5xFAD mice. Conversely, increased activated microglia and phagocytosis were observed in GDI2 ko mice. Further investigation revealed that GDI2 knockout led to more APP co-localized with the ER rather than the Golgi apparatus and endosomes in SH-SY5Y cells, resulting in decreased Aβ production. Collectively, these findings suggest that GDI2 may regulate Aβ production by modulating APP intracellular transport and localization dynamics. In summary, our study identifies GDI2 as a pivotal regulator governing APP transport and process implicated in AD pathology; thus highlighting its potential as an attractive pharmacological target for future drug development against AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。