Diabetes Aggravates Post-ischaemic Renal Fibrosis through Persistent Activation of TGF-β1 and Shh Signalling

糖尿病通过持续激活 TGF-β1 和 Shh 信号加重缺血后肾脏纤维化

阅读:5
作者:Dong-Jin Kim, Jun Mo Kang, Seon Hwa Park, Hyuk-Kwon Kwon, Seok-Jong Song, Haena Moon, Su-Mi Kim, Jung-Woo Seo, Yu Ho Lee, Yang Gyun Kim, Ju-Young Moon, So-Young Lee, Youngsook Son, Sang-Ho Lee

Abstract

Diabetes is a risk factor for acute kidney injury (AKI) and chronic kidney disease (CKD). Diabetic patients are easy to progress to CKD after AKI. Currently, activation of fibrotic signalling including transforming growth factor-β1 (TGF-β1) is recognized as a key mechanism in CKD. Here, we investigated the influence of diabetes on CKD progression after AKI by using a unilateral renal ischaemia-reperfusion injury (IRI) model in diabetic mice. IRI induced extensive tubular injury, fibrosis and lymphocyte recruitment at 3 weeks after IRI, irrespective of diabetes. However, diabetes showed sustained tubular injury and markedly increased fibrosis and lymphocyte recruitment compared with non-diabetes at 5 week after IRI. The mRNAs and proteins related to TGF-β1 and sonic hedgehog (Shh) signalling were significantly higher in diabetic versus non-diabetic IRI kidneys. During the in vitro study, the hyperglycaemia induced the activation of TGF-β1 and Shh signalling and also increased profibrogenic phenotype change. However, hyperglycaemic control with insulin did not improve the progression of renal fibrosis and the activation of TGF-β1 and Shh signalling. In conclusion, diabetes promotes CKD progression of AKI via activation of the TGF-β1 and Shh signalling pathways, but insulin treatment was not enough for preventing the progression of renal fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。