Exfoliated Ferrierite-Related Unilamellar Nanosheets in Solution and Their Use for Preparation of Mixed Zeolite Hierarchical Structures

溶液中的剥离镁碱石相关单层纳米片及其在混合沸石分级结构制备中的应用

阅读:4
作者:Wieslaw J Roth, Takayoshi Sasaki, Karol Wolski, Yasuo Ebina, Dai-Ming Tang, Yuichi Michiue, Nobuyuki Sakai, Renzhi Ma, Ovidiu Cretu, Jun Kikkawa, Koji Kimoto, Katarzyna Kalahurska, Barbara Gil, Michal Mazur, Szczepan Zapotoczny, Jiri Čejka, Justyna Grzybek, Andrzej Kowalczyk

Abstract

Direct exfoliation of layered zeolites into solutions of monolayers has remained unresolved since the 1990s. Recently, zeolite MCM-56 with the MWW topology (layers denoted mww) has been exfoliated directly in high yield by soft-chemical treatment with tetrabutylammonium hydroxide (TBAOH). This has enabled preparation of zeolite-based hierarchical materials and intimate composites with other active species that are unimaginable via the conventional solid-state routes. The extension to other frameworks, which provides broader benefits, diversified activity, and functionality, is not routine and requires finding suitable synthesis formulations, viz. compositions and conditions, of the layered zeolites themselves. This article reports exfoliation and characterization of layers with ferrierite-related structure, denoted bifer, having rectangular lattice constants like those of the FER and CDO zeolites, and thickness of approximately 2 nm, which is twice that of the so-called fer layer. Several techniques were combined to prove the exfoliation, supported by simulations: AFM; in-plane, in situ, and powder X-ray diffraction; TEM; and SAED. The results confirmed (i) the structure and crystallinity of the layers without unequivocal differentiation between the FER and CDO topologies and (ii) uniform thickness in solution (monodispersity), ruling out significant multilayered particles and other impurities. The bifer layers are zeolitic with Brønsted acid sites, demonstrated catalytic activity in the alkylation of mesitylene with benzyl alcohol, and intralayer pores visible in TEM. The practical benefits are demonstrated by the preparation of unprecedented intimately mixed zeolite composites with the mww, with activity greater than the sum of the components despite high content of inert silica as pillars.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。