Deep Antimicrobial Activity and Stability Analysis Inform Lysin Sequence-Function Mapping

深入的抗菌活性和稳定性分析为赖氨酸序列-功能映射提供信息

阅读:2
作者:Daniel T Tresnak ,Benjamin J Hackel

Abstract

Antibiotic-resistant infectious disease is a critical challenge to human health. Antimicrobial proteins offer a compelling solution if engineered for potency, selectivity, and physiological stability. Lysins, which lyse cells via degradation of cell wall peptidoglycans, have significant potential to fill this role. Yet, the functional complexity of antimicrobial activity has hindered high-throughput characterization for discovery and design. To dramatically expand knowledge of the sequence-function landscape of lysins, we developed a depletion-based assay for library-scale measurement of lysin inhibitory activity. We coupled this platform with a high-throughput proteolytic stability assay to assess the activity and stability of ∼5 × 104 lysin catalytic domain variants, resulting in the discovery of a variant with increased activity (70 ± 20%) and stability (7.2 ± 0.4 °C increased midpoint of thermal denaturation). Ridge regression of the resulting data set demonstrated that libraries with a higher average Hamming distance better informed pairwise models and that coupling activity and stability assays enabled better prediction of catalytically active lysins. The best models achieved Pearson's correlation coefficients of 0.87 ± 0.01 and 0.61 ± 0.04 for predicting catalytic domain stability and activity, respectively. Our work provides an efficient strategy for constructing protein sequence-function landscapes, drastically increases screening throughput for engineering lysins, and yields promising lysins for further development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。