Integrated Proteomic and Phosphoproteomic Analysis of the Hippocampus in a Mouse Model of Early Life Inflammation

小鼠生命早期炎症模型中海马的综合蛋白质组学和磷酸化蛋白质组学分析

阅读:6
作者:Xin-Miao Wu, Yu-Zhu Gao, Ting-Ting Zhu, Han-Wen Gu, Jian-Hua Tong, Jie Sun, Jian-Jun Yang, Mu-Huo Ji

Conclusions

Our findings demonstrated that neuroinflammation and impaired synapse may be involved in early life inflammation-induced cognitive impairment. Future studies are required to confirm our preliminary results.

Methods

Both female and male mice received a single intraperitoneal injection of 100 μg/kg lipopolysaccharide (LPS) on postnatal day 10 (P10). Behavioral tests, including open field, elevated plus-maze, and Y-maze tests, were performed on P39, P40, and P41, respectively. After behavioral tests, male mice were sacrificed. The whole brain tissues and the hippocampi were harvested on P42 for proteomic, phosphoproteomic, Western blot, and Golgi staining.

Results

Early life LPS exposure induced cognitive impairment in male mice but not in female mice, as assessed by the Y-maze test. Therefore, following biochemical tests were conducted on male mice. By proteomic analysis, 13 proteins in LPS group exhibited differential expression. Among these, 9 proteins were upregulated and 4 proteins were downregulated. For phosphoproteomic analysis, a total of 518 phosphopeptides were identified, of which 316 phosphopeptides were upregulated and 202 phosphopeptides were downregulated in the LPS group compared with the control group. Furthermore, KEGG analysis indicated that early life LPS exposure affected the glutamatergic synapse and neuroactive ligand-receptor interaction, which were associated with synaptic function and energy metabolism. Increased level of brain protein i3 (Bri3), decreased levels of PSD-95 and mGLUR5, and dendritic spine loss after early life LPS exposure further confirmed the findings of proteomic and phosphoproteomic analysis. Conclusions: Our findings demonstrated that neuroinflammation and impaired synapse may be involved in early life inflammation-induced cognitive impairment. Future studies are required to confirm our preliminary results.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。