Selective Oxidation of Methane to Methanol via In Situ H2O2 Synthesis

通过原位 H2O2 合成将甲烷选择性氧化为甲醇

阅读:14
作者:Fenglou Ni, Thomas Richards, Louise R Smith, David J Morgan, Thomas E Davies, Richard J Lewis, Graham J Hutchings

Abstract

The selective oxidation of methane to methanol, using H2O2 generated in situ from the elements, has been investigated using a series of ZSM-5-supported AuPd catalysts of varying elemental composition, prepared via a deposition precipitation protocol. The alloying of Pd with Au was found to offer significantly improved efficacy, compared to that observed over monometallic analogues. Complementary studies into catalytic performance toward the direct synthesis and subsequent degradation of H2O2, under idealized conditions, indicate that methane oxidation efficacy is not directly related to H2O2 production rates, and it is considered that the known ability of Au to promote the release of reactive oxygen species is the underlying cause for the improved performance of the bimetallic catalysts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。