Cellular State Transformations Using Deep Learning for Precision Medicine Applications

利用深度学习实现细胞状态转换,助力精准医疗应用

阅读:12
作者:Colin Targonski, M Reed Bender, Benjamin T Shealy, Benafsh Husain, Bill Paseman, Melissa C Smith, F Alex Feltus

Abstract

We introduce the Transcriptome State Perturbation Generator (TSPG) as a novel deep-learning method to identify changes in genomic expression that occur between tissue states using generative adversarial networks. TSPG learns the transcriptome perturbations from RNA-sequencing data required to shift from a source to a target class. We apply TSPG as an effective method of detecting biologically relevant alternate expression patterns between normal and tumor human tissue samples. We demonstrate that the application of TSPG to expression data obtained from a biopsy sample of a patient's kidney cancer can identify patient-specific differentially expressed genes between their individual tumor sample and a target class of healthy kidney gene expression. By utilizing TSPG in a precision medicine application in which the patient sample is not replicated (i.e., n=1n=1<math><mrow><mi>n</mi> <mo>=</mo> <mn>1</mn></mrow> </math> ), we present a novel technique of determining significant transcriptional aberrations that can be used to help identify potential targeted therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。