Effects of Maackia amurensis seed lectin (MASL) on oral squamous cell carcinoma (OSCC) gene expression and transcriptional signaling pathways

怀槐种子凝集素 (MASL) 对口腔鳞状细胞癌 (OSCC) 基因表达和转录信号通路的影响

阅读:8
作者:Kelly L Hamilton, Stephanie A Sheehan, Edward P Retzbach, Clinton A Timmerman, Garret B Gianneschi, Patrick J Tempera, Premalatha Balachandran, Gary S Goldberg

Conclusions

Taken together, results from this study indicate that MASL decreases activity of JAK-STAT, TGFβ-SMAD, and Wnt-βCTN signaling pathways to inhibit OSCC growth and motility. These data suggest that further studies should be undertaken to determine how MASL may also be used alone and in combination with other agents to treat oral cancer.

Methods

Here, we performed cell migration and cytotoxicity assays to assess the effects of MASL on OSCC motility and viability at physiologically relevant concentrations. We then performed comprehensive transcriptome analysis combined with transcription factor reporter assays to investigate the how MASL affects OSCC gene expression at these concentration. Key data were then confirmed by western blotting to evaluate the effects of MASL on gene expression and kinase signaling activity at the protein level.

Purpose

Oral cancer causes over 120,000 deaths annually and affects the quality of life for survivors. Over 90% of oral cancers are derived from oral squamous cell carcinoma cells (OSCCs) which are generally resistant to standard cytotoxic chemotherapy agents. OSCC cells often exhibit increased TGFβ and PDPN receptor activity compared to nontransformed oral epithelial cells. Maackia amurensis seed lectin (MASL) can target the PDPN receptor and has been identified as a novel agent that can be used to treat oral cancer. However, mechanisms by which MASL inhibits OSCC progression are not yet clearly defined.

Results

MASL significantly affected the expression of about 27% of approximately 15,000 genes found to be expressed by HSC-2 cells used to model OSCC cells in this study. These genes affected by MASL include members of the TGFβ-SMAD, JAK-STAT, and Wnt-βCTN signaling pathways. In particular, MASL decreased expression of PDPN, SOX2, and SMAD5 at the RNA and protein levels. MASL also inhibited SMAD and MAPK activity, and exhibited potential for combination therapy with doxorubicin and 5-fluorouracil. Conclusions: Taken together, results from this study indicate that MASL decreases activity of JAK-STAT, TGFβ-SMAD, and Wnt-βCTN signaling pathways to inhibit OSCC growth and motility. These data suggest that further studies should be undertaken to determine how MASL may also be used alone and in combination with other agents to treat oral cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。