Calpain-Independent Intracellular Protease Activity Is Elevated in Excitotoxic Cortical Neurons Prior to Delayed Calcium Deregulation and Mitochondrial Dysfunction

在延迟钙失调和线粒体功能障碍之前,兴奋毒性皮质神经元中不依赖钙蛋白酶的细胞内蛋白酶活性升高

阅读:4
作者:Brian M Polster, Karla A Mark, Rafael Arze, Derek Hudson

Abstract

Glutamate excitotoxicity contributes to many neurodegenerative diseases. Excessive glutamate receptor-mediated calcium entry causes delayed calcium deregulation (DCD) that coincides with abrupt mitochondrial depolarization. We developed cA-TAT, a live-cell protease activity reporter based on a vimentin calpain cleavage site, to test whether glutamate increases protease activity in neuronal cell bodies prior to DCD. Treatment of rat cortical neurons with excitotoxic (100 µM) glutamate increased the low baseline rate of intracellular cA-TAT proteolysis by approximately three-fold prior to DCD and by approximately seven-fold upon calcium deregulation. The glutamate-induced rate enhancement prior to DCD was suppressed by glutamate receptor antagonists, but not by calpain or proteasome inhibitors, whereas DCD-stimulated proteolysis was partly attenuated by the proteasome inhibitor MG132. Further suggesting that cA-TAT cleavage is calpain-independent, cA-TAT fluorescence was observed in immortalized Capn4 knockout fibroblasts lacking the regulatory calpain subunit. About half of the neurons lost calcium homeostasis within two hours of a transient, 20 min glutamate receptor stimulation. These neurons had a significantly (49%) higher mean baseline cA-TAT proteolysis rate than those maintaining calcium homeostasis, suggesting that the unknown protease(s) cleaving cA-TAT may influence DCD susceptibility. Overall, the results indicate that excitotoxic glutamate triggers the activation of calpain-independent neuronal protease activity prior to the simultaneous loss of calcium homeostasis and mitochondrial bioenergetic function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。