Characterization of the chloroplast genome of Gleditsia species and comparative analysis

皂荚属植物叶绿体基因组的表征及比较分析

阅读:6
作者:Feng Xiao, Yang Zhao, Xiurong Wang, Xueyan Jian

Abstract

The genus Gleditsia has significant medicinal and economic value, but information about the chloroplast genomic characteristics of Gleditsia species has been limited. Using the Illumina sequencing, we assembled and annotated the whole chloroplast genomes of seven Gleditsia species (Gleditsia sinensis, Gleditsia japonica var. delavayi (G. delavayi), G. fera, G. japonica, G. microphylla, Fructus Gleditsiae Abnormalis (Zhū Yá Zào), G. microphylla mutant). The assembled genomes revealed that Gleditsia species have a typical circular tetrad structure, with genome sizes ranging from 162,746 to 170,907 bp. Comparative genomic analysis showed that most (65.8-75.8%) of the abundant simple sequence repeats in Gleditsia and Gymnocladus species were located in the large single copy region. The Gleditsia chloroplast genome prefer T/A-ending codons and avoid C/G-ending codons, positive selection was acting on the rpoA, rpl20, atpB, ndhA and ycf4 genes, most of the chloroplast genes of Gleditsia species underwent purifying selection. Expansion and contraction of the inverted repeat (IR)/single copy (SC) region showed similar patterns within the Gleditsia genus. Polymorphism analysis revealed that coding regions were more conserved than non-coding regions, and the IR region was more conserved than the SC region. Mutational hotspots were mostly found in intergenic regions such as "rps16-trnQ", "trnT-trnL", "ndhG-ndhI", and "rpl32-trnL" in Gleditsia. Phylogenetic analysis showed that G. fera is most closely related to G. sinensis,G. japonica and G. delavayi are relatively closely related. Zhū Yá Zào can be considered a bud mutation of the G. sinensis. The albino phenotype of G. microphylla mutant is not caused by variations in the chloroplast genome, and that the occurrence of the albino phenotype may be due to mutations in chloroplast-related genes involved in splicing or localization functions. This study will help us enhance our exploration of the genetic evolution and geographical origins of the Gleditsia genus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。