Spatially organized differentiation of mesenchymal stem cells within biphasic microparticle-incorporated high cell density osteochondral tissues

双相微粒掺入的高细胞密度骨软骨组织中间充质干细胞的空间组织分化

阅读:6
作者:Loran D Solorio, Lauren M Phillips, Alexandra McMillan, Christina W Cheng, Phuong N Dang, Julia E Samorezov, Xiaohua Yu, William L Murphy, Eben Alsberg

Abstract

Giving rise to both bone and cartilage during development, bone marrow-derived mesenchymal stem cells (hMSC) have the unique capacity to generate the complex tissues of the osteochondral interface. Utilizing a scaffold-free hMSC system, biphasic osteochondral constructs are incorporated with two types of growth factor-releasing microparticles to enable spatially organized differentiation. Gelatin microspheres (GM) releasing transforming growth factor-β1 (TGF-β1) combined with hMSC form the chondrogenic phase. The osteogenic phase contains hMSC only, mineral-coated hydroxyapatite microparticles (MCM), or MCM loaded with bone morphogenetic protein-2 (BMP-2), cultured in medium with or without BMP-2. After 4 weeks, TGF-β1 release from GM within the cartilage phase promotes formation of a glycosaminoglycan- and type II collagen-rich matrix, and has a local inhibitory effect on osteogenesis. In the osteogenic phase, type X collagen and osteopontin are produced in all conditions. However, calcification occurs on the outer edges of the chondrogenic phase in some constructs cultured in media containing BMP-2, and alkaline phosphatase levels are elevated, indicating that BMP-2 releasing MCM provides better control over region-specific differentiation. The production of complex, stem cell-derived osteochondral tissues via incorporated microparticles could enable earlier implantation, potentially improving outcomes in the treatment of osteochondral defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。