Projections and interconnections of genetically defined serotonin neurons in mice

小鼠基因定义的血清素神经元的投射和互连

阅读:9
作者:Sun Jung Bang, Patricia Jensen, Susan M Dymecki, Kathryn G Commons

Abstract

Brain serotonin neurons are heterogeneous and can be distinguished by several anatomical and physiological characteristics. Toward resolving this heterogeneity into classes of functional relevance, subtypes of mature serotonin neurons were previously identified based on gene expression differences initiated during development in different rhombomeric (r) segments of the hindbrain. This redefinition of mature serotonin neuron subtypes based on the criteria of genetic lineage, along with the enabling genetic fate mapping tools, now allows various functional properties, such as axonal projections, to be allocated onto these identified subtypes. Furthermore, our approach uniquely enables interconnections between the different serotonin neuron subtypes to be determined; this is especially relevant because serotonin neuron activity is regulated by several feedback mechanisms. We used intersectional and subtractive genetic fate mapping tools to generate three independent lines of mice in which serotonin neurons arising in different rhombomeric segments, either r1, r2 or both r3 and r5, were uniquely distinguished from all other serotonin neurons by their expression of enhanced green fluorescent protein. Each of these subgroups of serotonergic neurons had a unique combination of forebrain projection targets. Typically more than one subgroup innervated an individual target area. Unique patterns of interconnections between the different groups of serotonin neurons were also observed and these pathways could subserve feedback regulatory circuits. Overall, the current findings suggest that activation of subsets of serotonin neurons could result in topographic serotonin release in the forebrain coupled with feedback inhibition of serotonin neurons with alternative projection targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。