Azide-Terminated RAFT Polymers for Biological Applications

用于生物应用的叠氮化物封端 RAFT 聚合物

阅读:20
作者:Ziwen Jiang, Huan He, Hongxu Liu, S Thayumanavan

Abstract

Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a commonly used polymerization methodology to generate synthetic polymers. The products of RAFT polymerization, i.e., RAFT polymers, have been widely employed in several biologically relevant areas, including drug delivery, biomedical imaging, and tissue engineering. In this article, we summarize a synthetic methodology to display an azide group at the chain end of a RAFT polymer, thus presenting a reactive site on the polymer terminus. This platform enables a click reaction between azide-terminated polymers and alkyne-containing molecules, providing a broadly applicable scaffold for chemical and bioconjugation reactions on RAFT polymers. We also highlight applications of these azide-terminated RAFT polymers in fluorophore labeling and for promoting organelle targeting capability. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of the azide derivatives of chain transfer agent and radical initiator Basic Protocol 2: Installation of an azide group on the α-end of RAFT polymers Alternate Protocol: Installation of an azide group on the ω-end of RAFT polymers Basic Protocol 3: Click reaction between azide-terminated RAFT polymers and alkyne derivatives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。