Analysis of the convective heat transfer through straight fin by using the Riemann-Liouville type fractional derivative: Probed by machine learning

利用黎曼-刘维尔型分数阶导数分析直翅片对流传热:机器学习探索

阅读:7
作者:Waseem, Asad Ullah, Sabir Ali, Fuad A Awwad, Emad A A Ismail

Abstract

This work aims to analyze the transfer of heat through new fractional-order convective straight fins by using the Riemann-Liouville type fractional derivatives. The convection through the fins is considered in such a way that the thermal conductivity depends on the temperature. The transformed fractional-order problems are constituted through an optimization problem in such a way that the L2L2<math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math> norm remains minimal. The objective functions are further analyzed with the hybrid Cuckoo search (HCS) algorithm that use the artificial neural network (ANN) mechanism. The impacts of the fractional parameter β, the thermo-geometric parameter of fin ψ, and dimensionless thermal conductivity α are explained through figures and tables. The fin efficiency during the whole process is explained with larger values of ψ. It is found that the larger values of ψ decline the fin efficacy. The fractional parameter declines the thermal profile as we approach the integer order. The convergence of HCS algorithm is performed in each case study. The residual error touches E−14E-14<math><mi>E</mi><mo>-</mo><mn>14</mn></math> for the integer order of α. The present results are validated through Table 6 by comparing with HPM, VIM and LHPM, while the error for HCS-ANN touches E−13E-13<math><mi>E</mi><mo>-</mo><mn>13</mn></math>. This proves that the proposed HCS is efficient.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。