Optimizing Immuno-PET Imaging of Tumor PD-L1 Expression: Pharmacokinetic, Biodistribution, and Dosimetric Comparisons of 89Zr-Labeled Anti-PD-L1 Antibody Formats

优化肿瘤 PD-L1 表达的免疫 PET 成像:89Zr 标记抗 PD-L1 抗体形式的药代动力学、生物分布和剂量学比较

阅读:6
作者:Alizée Bouleau, Hervé Nozach, Steven Dubois, Dimitri Kereselidze, Céline Chevaleyre, Cheng-I Wang, Michael J Evans, Vincent Lebon, Bernard Maillère, Charles Truillet

Conclusion

This study highlights the potential of designing radioligands with shorter pharmacokinetics for PD-L1 immuno-PET imaging in a preclinical model and encourages further clinical translation of such radioligands.

Methods

The pharmacokinetics, biodistribution, and dosimetry of the 3 89Zr-labeled C4 ligands were compared by longitudinal PET/CT imaging in nude mice bearing subcutaneous human non-small cell lung cancer xenografts with positive (H1975 model) or negative (A549 model) endogenous PD-L1 expression.

Results

The C4 radioligands substantially accumulated in PD-L1-positive tumors but not in PD-L1-negative tumors or in blocked PD-L1-positive tumors, confirming their PD-L1-specific tumor targeting. 89Zr-Fab C4 and 89Zr-IgG C4 (H310A/H435Q) were rapidly eliminated compared with 89Zr-IgG C4. Consequently, maximal tumor-to-muscle ratios were obtained earlier, at 4 h after injection for 89Zr-Fab C4 (ratio, ∼6) and 24 h after injection for 89Zr-IgG C4 (H310A/H435Q) (ratio, ∼9), versus 48 h after injection for 89Zr-IgG C4 (ratio, ∼8). Background activity in nontumor tissues was low, except for high kidney retention of 89Zr-Fab C4 and persistent liver accumulation of 89Zr-IgG C4 (H310A/H435Q) compared with 89Zr-IgG C4. Dosimetry estimates suggested that the C4 radioligands would yield organ-absorbed doses tolerable for repeated clinical PET imaging studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。