The dynamic-process characterization and prediction of synthetic gene circuits by dynamic delay model

用动态延迟模型表征和预测合成基因电路的动态过程

阅读:13
作者:Yanhong Sun, Fengyu Zhang, Qi Ouyang, Chunxiong Luo

Abstract

Differential equation models are widely used to describe genetic regulations, predict multicomponent regulatory circuits, and provide quantitative insights. However, it is still challenging to quantitatively link the dynamic behaviors with measured parameters in synthetic circuits. Here, we propose a dynamic delay model (DDM) which includes two simple parts: the dynamic determining part and the doses-related steady-state-determining part. The dynamic determining part is usually supposed as the delay time but without a clear formula. For the first time, we give the detail formula of the dynamic determining function and provide a method for measuring all parameters of synthetic elements (include 8 activators and 5 repressors) by microfluidic system. Three synthetic circuits were built to show that the DDM can notably improve the prediction accuracy and can be used in various synthetic biology applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。