Type II collagen scaffolds repair critical-sized osteochondral defects under induced conditions of osteoarthritis in rat knee joints via inhibiting TGF-β-Smad1/5/8 signaling pathway

II 型胶原支架通过抑制 TGF-β-Smad1/5/8 信号通路修复大鼠膝关节骨关节炎诱导条件下的临界骨软骨缺损

阅读:3
作者:Xu Hu, Min Jin, Kang Sun, Zhen Zhang, Zhonglian Wu, Junli Shi, Peilai Liu, Hang Yao, Dong-An Wang

Abstract

The bidirectional relationship between osteochondral defects (OCD) and osteoarthritis (OA), with each condition exacerbating the other, makes OCD regeneration in the presence of OA challenging. Type II collagen (Col2) is important in OCD regeneration and the management of OA, but its potential applications in cartilage tissue engineering are significantly limited. This study investigated the regeneration capacity of Col2 scaffolds in critical-sized OCDs under surgically induced OA conditions and explored the underlying mechanisms that promoted OCD regeneration. Furthermore, the repair potential of Col2 scaffolds was validated in over critical-sized OCD models. After 90 days or 150 days since scaffold implantation, complete healing was observed histologically in critical-sized OCD, evidenced by the excellent integration with surrounding native tissues. The newly formed tissue biochemically resembled adjacent natural tissue and exhibited comparable biomechanical properties. The regenerated OA tissue demonstrated lower expression of genes associated with cartilage degradation than native OA tissue but comparable expression of genes related to osteochondral anabolism compared with normal tissue. Additionally, transcriptome and proteome analysis revealed the hindrance of TGF-β-Smad1/5/8 in regenerated OA tissue. In conclusion, the engrafting of Col2 scaffolds led to the successful regeneration of critical-sized OCDs under surgically induced OA conditions by inhibiting the TGF-β-Smad1/5/8 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。