LYTAK1 attenuates proliferation of retinal pigment epithelial cells through TGF-β-mediated epithelial-mesenchymal transition via the ERK/AKT signaling pathway

LYTAK1 通过 ERK/AKT 信号通路抑制 TGF-β 介导的上皮-间质转化,从而减弱视网膜色素上皮细胞的增殖

阅读:5
作者:Zhen Chen, Ninghua Ni, Yan Mei, Zhengrong Yang

Abstract

Retinal pigment epithelial (RPE) cells have crucial roles in the initiation and development of human ophthalmic diseases. Our previous study suggested that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a potential target in the progression and pathogenesis of human proliferative vitreoretinopathy disease. The present study further analyzed the role of TAK1 inhibitor, LYTAK1, in human RPE cells and explored the potential molecular mechanism of LYTAK1-mediated proliferation of human RPE cells. Proliferation of human RPE cells was investigated following treatment with LYTAK1 and knockdown of TGF-β. TGF-β-mediated epithelial-mesenchymal transition (EMT) through regulation of the extracellular signal-regulated kinase (ERK)/protein kinase B (AKT) signaling pathway was also explored to analyze the LYTAK1-mediated mechanism of proliferation in human RPE cells. The present results demonstrated that LYTAK1 administration suppressed TAK1 gene and protein expression in human RPE cells. LYTAK1 administration also inhibited proliferation and migration of human RPE cells in vitro. Outcomes indicated that LYTAK1 treatment downregulated expression levels of TGF-β1 and EMT markers, including cadherin, fibronectin and α-smooth muscle actin in human RPE cells. Notably, results demonstrated that the ERK/AKT signal pathway was blocked by LYTAK1 in human RPE cells. Knockdown of TGF-β markedly inhibited phosphorylation and activity of TAK1 and suppressed the LYTAK1-mediated ERK/AKT signaling pathway in RPE cells, which further canceled inhibition of RPE cell proliferation by LYTAK1. In conclusion, these findings indicated that LYTAK1 may inhibit RPE cell proliferation through the TGF-β-mediated EMT/ERK/AKT signaling pathway, suggesting that TAK1 may be a potential target for the treatment of RPE diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。