HDAC1 regulates pluripotency and lineage specific transcriptional networks in embryonic and trophoblast stem cells

HDAC1 调节胚胎和滋养层干细胞的多能性和谱系特异性转录网络

阅读:8
作者:Benjamin L Kidder, Stephen Palmer

Abstract

Epigenetic regulation of gene expression is important in maintaining self-renewal of embryonic stem (ES) and trophoblast stem (TS) cells. Histone deacetylases (HDACs) negatively control histone acetylation by removing covalent acetylation marks from histone tails. Because histone acetylation is a known mark for active transcription, HDACs presumably associate with inactive genes. Here, we used genome-wide chromatin immunoprecipitation to investigate targets of HDAC1 in ES and TS cells. Through evaluation of genes associated with acetylated histone H3 marks, and global expression analysis of Hdac1 knockout ES and trichostatin A-treated ES and TS cells, we found that HDAC1 occupies mainly active genes, including important regulators of ES and TS cells self-renewal. We also observed occupancy of methyl-CpG binding domain protein 3 (MBD3), a subunit of the nucleosome remodeling and histone deacetylation (NuRD) complex, at a subset of HDAC1-occupied sequences in ES cells, including the pluripotency regulators Oct4, Nanog and Kfl4. By mapping HDAC1 targets on a global scale, our results describe further insight into epigenetic mechanisms of ES and TS cells self-renewal.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。