Zoledronic acid inhibits osteoclastogenesis and bone resorptive function by suppressing RANKL‑mediated NF‑κB and JNK and their downstream signalling pathways

唑来膦酸通过抑制 RANKL 介导的 NF-κB 和 JNK 及其下游信号通路来抑制破骨细胞生成和骨吸收功能

阅读:4
作者:Xiao-Lin Huang, Chao Liu, Xue-Mei Shi, Yu-Ting Cheng, Qian Zhou, Jian-Ping Li, Jian Liao

Abstract

Targeting excessive osteoclast differentiation and activity is considered a valid therapeutic approach for osteoporosis. Zoledronic acid (ZOL) plays a pivotal role in regulating bone mineral density. However, the exact molecular mechanisms responsible for the inhibitory effects of ZOL on receptor activator of nuclear factor (NF)‑κB ligand (RANKL)‑induced osteoclast formation are not entirely clear. The present study aimed to investigate the role of ZOL in osteoclast differentiation and function, and to determine whether NF‑κB and mitogen‑activated protein kinase, and their downstream signalling pathways, are involved in this process. RAW264.7 cells were cultured with RANKL for differentiation into osteoclasts, in either the presence or absence of ZOL. Osteoclast formation was observed by tartrate‑resistant acid phosphatase staining and bone resorption pit assays using dentine slices. The expression of osteoclast‑specific molecules was analysed using reverse transcription‑quantitative polymerase chain reaction and western blotting assays to deduce the molecular mechanisms underlying the role of ZOL in osteoclastogenesis. The results showed that ZOL significantly attenuated osteoclastogenesis and bone resorptive capacity in vitro. ZOL also suppressed the activation of NF‑κB and the phosphorylation of c‑Jun N‑terminal kinase. Furthermore, it inhibited the expression of the downstream factors c‑Jun, c‑Fos and nuclear factor of activated T cells c1, thereby decreasing the expression of dendritic cell‑specific transmembrane protein and other osteoclast‑specific markers. In conclusion, ZOL may have therapeutic potential for osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。