Diminished α7 nicotinic acetylcholine receptor (α7nAChR) rescues amyloid-β induced atrial remodeling by oxi-CaMKII/MAPK/AP-1 axis-mediated mitochondrial oxidative stress

α7 烟碱乙酰胆碱受体 (α7nAChR) 减少可通过 oxi-CaMKII/MAPK/AP-1 轴介导的线粒体氧化应激挽救淀粉样β蛋白引起的心房重塑

阅读:8
作者:Jikai Zhao, Liming Yu, Xiaodong Xue, Yinli Xu, Tao Huang, Dengyue Xu, Zhishang Wang, Linyu Luo, Huishan Wang

Abstract

The potential coexistence of Alzheimer's disease (AD) and atrial fibrillation (AF) is increasingly common as aging-related diseases. However, little is known about mechanisms responsible for atrial remodeling in AD pathogenesis. α7 nicotinic acetylcholine receptors (α7nAChR) has been shown to have profound effects on mitochondrial oxidative stress in both organ diseases. Here, we investigate the role of α7nAChR in mediating the effects of amyloid-β (Aβ) in cultured mouse atrial cardiomyocytes (HL-1 cells) and AD model mice (APP/PS1). In vitro, apoptosis, oxidative stress and mitochondrial dysfunction induced by Aβ long-term (72h) in HL-1 cells were prevented by α-Bungarotoxin(α-BTX), an antagonist of α7nAChR. This cardioprotective effect was due to reinstating Ca2+ mishandling by decreasing the activation of CaMKII and MAPK signaling pathway, especially the oxidation of CaMKII (oxi-CaMKII). In vivo studies demonstrated that targeting knockdown of α7nAChR in cardiomyocytes could ameliorate AF progression in late-stage (12 months) APP/PS1 mice. Moreover, α7nAChR deficiency in cardiomyocytes attenuated APP/PS1-mutant induced atrial remodeling characterized by reducing fibrosis, atrial dilation, conduction dysfunction, and inflammatory mediator activities via suppressing oxi-CaMKII/MAPK/AP-1. Taken together, our findings suggest that diminished α7nAChR could rescue Aβ-induced atrial remodeling through oxi-CaMKII/MAPK/AP-1-mediated mitochondrial oxidative stress in atrial cells and AD mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。