Nanotopography Sequentially Mediates Human Mesenchymal Stem Cell-Derived Small Extracellular Vesicles for Enhancing Osteogenesis

纳米拓扑结构依次介导人类间充质干细胞衍生的小细胞外囊泡以增强成骨作用

阅读:5
作者:Liang Ma, Gaocai Li, Jie Lei, Yu Song, Xiaobo Feng, Lei Tan, Rongjin Luo, Zhiwei Liao, Yunsong Shi, Weifeng Zhang, Xiangmei Liu, Weibin Sheng, Shuilin Wu, Cao Yang

Abstract

Engineered small extracellular vesicles (sEVs) are used as tools to enhance therapeutic efficacy. However, such application of sEVs is associated with several issues, including high costs and a high risk of tumorigenesis. Nanotopography has a greater influence on bone-related cell behaviors. However, whether nanotopography specifically mediate sEV content to perform particular biological functions remains unclear. Here, we demonstrate that selective nanotopography may be used to sequentially mediate human bone mesenchymal stem cell (hBMSC) sEVs to enhance the therapeutic efficacy of hBMSCs-EVs for osteogenesis. We subjected sEVs harvested from hBMSCs cultured on polished titanium plates (Ti) or nanotopographical titanium plates (Ti4) after 7, 14, and 21 d for RNA sequencing, and we found that there was no significant difference in sEV-miRNA expression after 7 d. Differentially expressed osteogenic-related microRNAs were founded after 14 days, and KEGG analysis indicated that the main microRNAs were associated with osteogenesis-related pathways, such as TGF-beta, AMPK, and FoxO. A significant difference was found in sEV-miRNAs expression after 21 d. We loaded sEV secreted from hBMSCs cultured on Ti4 after 21 d on 3D-printed porous PEEK scaffolds with poly dopamine (PDA) and found that such scaffolds showed superior osteogenic ability after 6- and 12-weeks. Here, we demonstrate the alkali- and heat-treated nanotopography with the ability of stimulating osteogenic differentiation of hBMSC can induce the secretion of pro-osteogenesis sEV, and we also found that sEVs meditate osteogenesis through miRNA. Thus, whether nanotopography has the ability to regulate other contents of sEVs such as proteins for enhancing osteogenesis needs further research. These findings may help us use nanotopography to extract sEVs for other biomedical applications, including cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。