Using Yoda-1 to mimic laminar flow in vitro: A tool to simplify drug testing

使用 Yoda-1 模拟体外层流:一种简化药物测试的工具

阅读:5
作者:Jessica E Davies, Dora Lopresto, Bonita H R Apta, Zhiyuan Lin, Wenxin Ma, Matthew T Harper

Abstract

The endothelium is an attractive drug target and an important site of adverse drug reactions. Endothelial dysfunction is strongly associated with inflammation and contributes to drug-induced cardiovascular toxicity. Endothelial cells in the circulation are exposed to haemodynamic forces including shear stress. Including shear stress may improve future endothelial cell drug discovery or toxicity screening. Piezo-1 is required for endothelial cells to respond to shear stress. In this study, we investigated whether a small molecule activator of Piezo-1, Yoda-1, can mimic the effect of laminar flow-induced shear stress on endothelial cell inflammation, and endothelial cytotoxicity in response to the chemotherapy agent, doxorubicin. First, we tested whether Yoda-1 could mimic the effects of shear stress of expression of the endothelial adhesion molecules, ICAM-1 and VCAM-1. Human umbilical vein endothelial cells (HUVEC) were cultured in static conditions (with or without Yoda-1) or under laminar flow-induced shear stress (5 dyn/cm2). Yoda-1 and laminar flow had similar anti-inflammatory effects, reducing the ability of TNF-α to induce ICAM-1 and VCAM-1 expression. We then tested whether Yoda-1 could mimic the effect of shear stress on doxorubicin-induced cytotoxicity. Both laminar flow and Yoda-1 treatment of static cultures increased the cytotoxicity of doxorubicin. These findings show that Piezo-1 activation with Yoda-1 in static culture leads to an endothelial cell phenotype that mimics endothelial cells under laminar flow. Pharmacological activation of Piezo-1 may be a useful approach to mimic constant shear stress in static cultures, which may improve endothelial drug discovery and toxicity testing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。