Bone Marrow-Derived Mesenchymal Stem Cells Transplantation Attenuates Renal Fibrosis Following Acute Kidney Injury in Rats by Diminishing Pericyte-Myofibroblast Transition and Extracellular Matrix Augment

骨髓间充质干细胞移植通过减少周细胞-肌成纤维细胞转变和增加细胞外基质来减轻大鼠急性肾损伤后的肾脏纤维化

阅读:7
作者:Hao Wang, Maoting Li, Liyan Fei, Chuang Xie, Lingling Ding, Changhao Zhu, Fanzhou Zeng, Nanmei Liu

Background

Renal fibrosis is a common chronic outcome of acute kidney injury (AKI). Pericyte-myofibroblasts transition and production of abundant extracellular matrix are the important pathologic basis. This study investigated the effect of bone marrow-derived mesenchymal stem cells (BMSCs) transplantation on the AKI kidney fibrosis and the possible mechanisms.

Conclusions

Bone marrow-derived mesenchymal stem cells transplantation diminished pericyte-myofibroblast transition and extracellular matrix augment after AKI by regulating the TGF-β/Smad2/3 signaling pathway. It may be used as a novel therapeutic method for retarding renal fibrosis, which is worthy of further study.

Methods

By constructing the animal and cell model of AKI pericyte injury, the therapeutic effect of BMSCs on pericyte-myofibroblasts transition was detected. The production and accumulation of extracellular matrix, including collagen I, collagen III, and fibronectin were also tested. The mechanism was revealed by means of analysis of signal pathway.

Results

After AKI insult, many myofibroblasts emerged in the renal interstitium together with a large amount of extracellular matrix components. The BMSCs transplantation significantly decreased the number of myofibroblasts trans-differentiated from pericytes in the AKI model. The changes of vascular endothelial growth factor subtypes and Ang-I/AngII secreted by pericytes were also significantly reduced after BMSCs co-culture. At the same time, extracellular matrix components, including collagen I, collagen III, and fibronectin, decreased significantly. Transplantation treatment alleviated the fibrosis score. The transforming growth factor β (TGF-β) concentration decreased as well as the levels of Smad2/3 and p-Smad2/3 with the presence of BMSCs therapy. Conclusions: Bone marrow-derived mesenchymal stem cells transplantation diminished pericyte-myofibroblast transition and extracellular matrix augment after AKI by regulating the TGF-β/Smad2/3 signaling pathway. It may be used as a novel therapeutic method for retarding renal fibrosis, which is worthy of further study.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。