Phenotypic drug screening in a human fibrosis model identified a novel class of antifibrotic therapeutics

在人类纤维化模型中进行表型药物筛选,确定了一类新型抗纤维化疗法

阅读:3
作者:Michael Gerckens, Kenji Schorpp, Francesco Pelizza, Melanie Wögrath, Kora Reichau, Huilong Ma, Armando-Marco Dworsky, Arunima Sengupta, Mircea Gabriel Stoleriu, Katharina Heinzelmann, Juliane Merl-Pham, Martin Irmler, Hani N Alsafadi, Eduard Trenkenschuh, Lenka Sarnova, Marketa Jirouskova, Wolfgang

Abstract

Fibrogenic processes instigate fatal chronic diseases leading to organ failure and death. Underlying biological processes involve induced massive deposition of extracellular matrix (ECM) by aberrant fibroblasts. We subjected diseased primary human lung fibroblasts to an advanced three-dimensional phenotypic high-content assay and screened a repurposing drug library of small molecules for inhibiting ECM deposition. Fibrotic Pattern Detection by Artificial Intelligence identified tranilast as an effective inhibitor. Structure-activity relationship studies confirmed N-(2-butoxyphenyl)-3-(phenyl)acrylamides (N23Ps) as a novel and highly potent compound class. N23Ps suppressed myofibroblast transdifferentiation, ECM deposition, cellular contractility, and altered cell shapes, thus advocating a unique mode of action. Mechanistically, transcriptomics identified SMURF2 as a potential therapeutic target network. Antifibrotic activity of N23Ps was verified by proteomics in a human ex vivo tissue fibrosis disease model, suppressing profibrotic markers SERPINE1 and CXCL8. Conclusively, N23Ps are a novel class of highly potent compounds inhibiting organ fibrosis in patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。