Lipoxin A4 ameliorates lipopolysaccharide-induced lung injury through stimulating epithelial proliferation, reducing epithelial cell apoptosis and inhibits epithelial-mesenchymal transition

脂氧素 A4 通过刺激上皮细胞增殖、减少上皮细胞凋亡和抑制上皮-间质转化来改善脂多糖引起的肺损伤

阅读:4
作者:Jing-Xiang Yang, Ming Li, Xin-Ou Chen, Qing-Quan Lian, Qian Wang, Fang Gao, Sheng-Wei Jin, Sheng-Xing Zheng

Background

Acute respiratory distress syndrome (ARDS) is characterized by alveolar epithelial disruption. Lipoxins (LXs), as so-called "braking signals" of inflammation, are the first mediators identified to have dual anti-inflammatory and inflammatory pro-resolving properties.

Conclusion

LipoxinA4 attenuates lung injury via stimulating epithelial cell proliferation, reducing epithelial cell apoptosis and inhibits epithelial-mesenchymal transition.

Methods

In vivo, lipoxinA4 was administrated intraperitoneally with 1 μg/per mouse after intra-tracheal LPS administration (10 mg/kg). Apoptosis, proliferation and epithelial-mesenchymal transition of AT II cells were measured by immunofluorescence. In vitro, primary human alveolar type II cells were used to model the effects of lipoxin A4 upon proliferation, apoptosis and epithelial-mesenchymal transition.

Results

In vivo, lipoxin A4 markedly promoted alveolar epithelial type II cells (AT II cells) proliferation, inhibited AT II cells apoptosis, reduced cleaved caspase-3 expression and epithelial-mesenchymal transition, with the outcome of attenuated LPS-induced lung injury. In vitro, lipoxin A4 increased primary human alveolar epithelial type II cells (AT II cells) proliferation and reduced LPS induced AT II cells apoptosis. LipoxinA4 also inhibited epithelial mesenchymal transition in response to TGF-β1, which was lipoxin receptor dependent. In addition, Smad3 inhibitor (Sis3) and PI3K inhibitor (LY294002) treatment abolished the inhibitory effects of lipoxinA4 on the epithelial mesenchymal transition of primary human AT II cells. Lipoxin A4 significantly downregulated the expressions of p-AKT and p-Smad stimulated by TGF-β1 in primary human AT II cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。