Inhibition of T cell immunoglobulin and mucin-1 (TIM-1) protects against cerebral ischemia-reperfusion injury

抑制 T 细胞免疫球蛋白和粘蛋白-1 (TIM-1) 可防止脑缺血再灌注损伤

阅读:8
作者:Yueying Zheng, Liqing Wang, Manli Chen, Lu Liu, Aijie Pei, Rong Zhang, Shuyuan Gan, Shengmei Zhu

Background

The T cell Ig domain and mucin domain (TIM)-1 protein expressed on the surface of Th2 cells regulates the immune response by modulating cytokine production. The present study aimed to investigate the role and possible mechanism of TIM-1 in cerebral ischemia-reperfusion injury.

Conclusion

Take together, these results indicated that TIM-1 blockade ameliorated cerebral ischemia-reperfusion injury. Thus, TIM-1 disruption may serve as a novel target for therapy following MCAO.

Methods

Western blot was used to detect TIM-1 and apoptosis-related protein expression, whereas TIM-1 mRNA was examined using quantitative real-time reverse transcription PCR. Flow cytometry and a TdT-mediated biotin-16-dUTP nick-end labeling (TUNEL) assay were used to detect the percentage of apoptotic cells and a pathological examination was performed. The migration of neutrophils and macrophages was analyzed by immunohistochemistry.

Results

Our results suggest that TIM-1 expression was transiently increased 24 h or 48 h following middle cerebral artery occlusion (MCAO)/reperfusion. The infarct size was markedly increased in MCAO, whereas treatment with a TIM-1-blocking mAb could reduce the infarct size. TIM-1 blocking mAb effectively reduced the number of neutrophils, macrophage functionality, cytokine (i.e., IL-6, IL-1β, and TNF-α) and chemokine (i.e., CXCL-1 and CXCL-2) production in the brain tissue. The effect of in vitro T cell damage on neurons was significantly reduced following treatment with a TIM-1 blocking mAb or the knockdown of TIM-1 in co-cultured T cells and neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。