A Single Oxidosqualene Cyclase Produces the Seco-Triterpenoid α-Onocerin

单个氧化角鲨烯环化酶产生 Seco-Triterpenoid α-Onocerin

阅读:10
作者:Aldo Almeida, Lemeng Dong, Bekzod Khakimov, Jean-Etienne Bassard, Tessa Moses, Frederic Lota, Alain Goossens, Giovanni Appendino, Søren Bak

Abstract

8,14-seco-Triterpenoids are characterized by their unusual open C-ring. Their distribution in nature is rare and scattered in taxonomically unrelated plants. The 8,14-seco-triterpenoid α-onocerin is only known from the evolutionarily distant clubmoss genus Lycopodium and the leguminous genus Ononis, which makes the biosynthesis of this seco-triterpenoid intriguing from an evolutionary standpoint. In our experiments with Ononis spinosa, α-onocerin was detected only in the roots. Through transcriptome analysis of the roots, an oxidosqualene cyclase, OsONS1, was identified that produces α-onocerin from squalene-2,3;22,23-dioxide when transiently expressed in Nicotiana bethamiana In contrast, in Lycopodium clavatum, two sequential cyclases, LcLCC and LcLCD, are required to produce α-onocerin in the N. benthamiana transient expression system. Expression of OsONS1 in the lanosterol synthase knockout yeast strain GIL77, which accumulates squalene-2,3;22,23-dioxide, verified the α-onocerin production. A phylogenetic analysis predicts that OsONS1 branches off from specific lupeol synthases and does not group with the known L. clavatum α-onocerin cyclases. Both the biochemical and phylogenetic analyses of OsONS1 suggest convergent evolution of the α-onocerin pathways. When OsONS1 was coexpressed in N. benthamiana leaves with either of the two O. spinosa squalene epoxidases, OsSQE1 or OsSQE2, α-onocerin production was boosted, most likely because the epoxidases produce higher amounts of squalene-2,3;22,23-dioxide. Fluorescence lifetime imaging microscopy analysis demonstrated specific protein-protein interactions between OsONS1 and both O. spinosa squalene epoxidases. Coexpression of OsONS1 with the two OsSQEs suggests that OsSQE2 is the preferred partner of OsONS1 in planta. Our results provide an example of the convergent evolution of plant specialized metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。