Cell-type-specific tuning of Cav1.3 Ca(2+)-channels by a C-terminal automodulatory domain

通过 C 端自调节域对 Cav1.3 Ca(2+) 通道进行细胞类型特异性调节

阅读:7
作者:Anja Scharinger, Stephanie Eckrich, David H Vandael, Kai Schönig, Alexandra Koschak, Dietmar Hecker, Gurjot Kaur, Amy Lee, Anupam Sah, Dusan Bartsch, Bruno Benedetti, Andreas Lieb, Bernhard Schick, Nicolas Singewald, Martina J Sinnegger-Brauns, Emilio Carbone, Jutta Engel, Jörg Striessnig

Abstract

Cav1.3 L-type Ca(2+)-channel function is regulated by a C-terminal automodulatory domain (CTM). It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca(2+)- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca(2+)-dependent inactivation and stronger voltage-sensitivity upon heterologous expression. However, the role of this modulatory domain for channel function in its native environment is unkown. To determine its functional significance in vivo, we interrupted the CTM with a hemagglutinin tag in mutant mice (Cav1.3DCRD(HA/HA)). Using these mice we provide biochemical evidence for the existence of long (CTM-containing) and short (CTM-deficient) Cav1.3 α1-subunits in brain. The long (HA-labeled) Cav1.3 isoform was present in all ribbon synapses of cochlear inner hair cells. CTM-elimination impaired Ca(2+)-dependent inactivation of Ca(2+)-currents in hair cells but increased it in chromaffin cells, resulting in hyperpolarized resting potentials and reduced pacemaking. CTM disruption did not affect hearing thresholds. We show that the modulatory function of the CTM is affected by its native environment in different cells and thus occurs in a cell-type specific manner in vivo. It stabilizes gating properties of Cav1.3 channels required for normal electrical excitability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。