Diabetes-Induced NF-κB Dysregulation in Skeletal Stem Cells Prevents Resolution of Inflammation

糖尿病诱导的骨骼干细胞NF-κB失调阻碍炎症消退

阅读:1
作者:Kang I Ko ,Abby L Syverson ,Richard M Kralik ,Jerry Choi ,Brett P DerGarabedian ,Chider Chen ,Dana T Graves

Abstract

Type 1 diabetes (T1D) imposes a significant health burden by negatively affecting tissue regeneration during wound healing. The adverse effect of diabetes is attributed to high levels of inflammation, but the cellular mechanisms responsible remain elusive. In this study, we show that intrinsic skeletal stem cells (SSCs), a subset of mesenchymal stem cells, are essential for resolution of inflammation to occur during osseous healing by using genetic approaches to selectively ablate SSCs. T1D caused aberrant nuclear factor-κB (NF-κB) activation in SSCs and substantially enhanced inflammation in vivo. Constitutive or tamoxifen-induced inhibition of NF-κB in SSCs rescued the impact of diabetes on inflammation, SSC expansion, and tissue formation. In contrast, NF-κB inhibition in chondrocytes failed to reverse the effect of T1D. Mechanistically, diabetes caused defective proresolving macrophage (M2) polarization by reducing TGF-β1 expression by SSCs, which was recovered by NF-κB inhibition or exogenous TGF-β1 treatment. These data identify an underlying mechanism for altered healing in T1D and demonstrate that diabetes induces NF-κB hyperactivation in SSCs to disrupt their ability to modulate M2 polarization and resolve inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。